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Free-surface flows with two stagnation points 
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Symmetric suction flows are computed. The flows are free-surface flows with two 
stagnation points. The configuration is related to the modelling of wave breaking at 
the bow of a ship. It is shown that there is a countably infinite number of solutions 
and that the free-surface profiles are characterized by waves. 

1. Introduction 
In a recent paper Dias & Vanden-Broeck (1993) presented a model for the spray 

at the bow of a ship. The bow was assumed to be a semi-infinite flat-bottomed body 
terminated by a face inclined with the horizontal. The spray was modelled by a layer 
of water rising along the bow and falling back as a jet (see figures l a  and lb). 

The solutions were computed by a series truncation procedure. It was found that 
there is a solution for each value of the Froude number 

Here U is the ship velocity, g the acceleration due to gravity and d the draught. 
For large values of Fd, the separation point D is on the bow as in figure l(a). As 

Fd decreases, the separation point D rises along the bow and then moves on the free 
surface. There are therefore two stagnation points S and D on the free surface (see 
figure lh) .  As Fd is further decreased, the distance between the stagnation points D 
and S increases. However more and more terms in the series representation are needed 
to compute accurate solutions. Therefore Dias & Vanden-Broeck (1993) presented 
only solutions for which the distance between the two stagnation points D and S is 
relatively small. 

In this paper we consider another flow for which there are two stagnation points 
on the free surface (see figure 2). This flow can be created by opening a slit in a flow 
beneath a flat plate and applying a negative or positive pressure in the slit. There is 
a vertical wall BC and a horizontal wall AB on the left as in figures l(a) and l(b). 
There is also a vertical wall E D  and a horizontal wall E G  on the right. Therefore 
the configuration of figure 2 can be viewed as an ‘approximation’ of the flow of 
figure l(b) in which the dividing streamline DI is replaced by the walls E D  and EG. 
The ‘approximation’ has the advantage that solutions for which the distance between 
the two stagnation points is large can be computed. This configuration is also relevant 
to particular shapes of ships used to launch objects into the sea or retrieve them from 
the sea. Experiments have shown that the launching or retrieving procedure is easier 
if it is done through a hole in the middle of the ship rather than from overboard 
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FIGURE 1. Bow flows: (a) stagnation point D on the bow, (b )  stagnation point D on the free 
surface. The dotted lines represent the dividing streamlines. 
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FIGURE 2. Free-surface flow with two stagnation points. This is a computed solution with 

X 

P = 2.222, f = 1.147, L = 8.696, FI = 0.363, H = 0.213, C, = -2.225. 

(B. Molin, personal communication 1996). When the ship is in motion, the fluid 
motion inside the hole is still poorly understood. In addition to steady motions, two 
types of sloshing modes have been observed: a piston-like mode in which the whole 
body of water moves up and down inside the hole, and a standing-wave mode in 
which there is sloshing inside the hole. 

The steady problem is formulated in $2. Two different reformulations based on 
an integral equation and on a series representation are described in the 992.1 and 
2.2. These reformulations are equivalent but are used in the $53.1 and 3.2 to derive 
two different numerical schemes. These numerical approaches are similar to the ones 
used for example by Vanden-Broeck (1980, 1984), Tuck (1987), Vanden-Broeck & 
Dias (1992), Dias & Vanden-Broeck (1993) and Moni & King (1995). Solutions are 
obtained for various values of the parameters and the results are discussed in 994 
and 5. The computations for large distance between the stagnation points reveal an 
interesting feature of the flow: there is a countably infinite number of solutions and 
the profiles are wavy. 
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FIGURE 3 The image of the flow of figure 2 in the plane of the complex potential (f-plane) is the 
lower half-plane Its image in the t-plane is the upper half-unit disk The images of the points 
labelled In figure 2 are shown 

2. Formulation 
The flow configuration shown in figure 2 is considered. The flow domain is bounded 

above by the vertical walls BC and E D  and by the horizontal walls AB and E G .  The 
fluid is assumed to be incompressible and inviscid. The flow is assumed to be steady 
and irrotational. Far downstream the flow is characterized by a uniform stream with 
a constant velocity U .  We choose Cartesian coordinates with the origin on the free 
surface at an equal distance from the two vertical walls. The flow is assumed to be 
symmetric with respect to the y-axis. Non-symmetric solutions and solutions where 
the flow detaches at corner B could be computed as well but are left for future work. 
We introduce the potential function 4 and the stream function y .  Without loss of 
generality we choose w = 0 on the free surface and 4 = 0 at the origin. The values 
of the potential function at the points D and E are denoted by +p and Sbp + &. 
It follows from the symmetry of the flow that 4 = -g5p and 4 = -q5p - bK at the 
points C and B.  

We shall construct solutions for which the points C and D are stagnation points. 
It can be shown that the free surface is then horizontal at the two points C and D 
(see Dagan & Tulin 1972). 

We define dimensionless variables by taking 4 K / U  as the unit length and U as 
the unit velocity. The problem is then characterized by the dimensionless value 
P = 4 p / c $ K  of the potential at D and the dimensionless parameters 

where h denotes the level of the stagnation points above the horizontal walls, 1 the 
width between the vertical walls, patm the pressure along the free surface and pa the 
pressure at infinity along the horizontal walls. 

Next we define the complex velocity < = u-iz), where u and v denote the horizontal 
and vertical components of the velocity. The function 5 is an analytic function of the 
complex potential f (the flow configuration in the f-plane is shown in figure 3). The 
free surface is described by x(4) and ~ ( 4 ) .  The values of x(4) and of y ( 4 )  can be 
evaluated in terms of u and u by integrating the identity 

1 
x4 + iy4 = ~ 

u - iv 
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On the free surface the pressure is constant. Therefore Bernoulli's equation yields 

;+L2 + v2) + y ( 4 )  = y ( P ) .  (2.3) 
This concludes the formulation of the problem. We seek c as an analytic function 

o f f  in the lower half-plane y < 0. This function must approach 1 as y +. -a and 
satisfy (2.3) on CD and the kinematic conditions 

u = O  on BC and DE (2.4) 
and 

v = O  on AB and E G .  
Bernoulli's equation yields 

2H 
C , = l - - .  

F: 
2.1. Integral equation reformulation 

In this subsection we reformulate the problem as an integral equation. 
conveniently done by defining the function z - iO by 

This is 

(2.6) 5 = eT-i@ 

We seek z - iB as a function of the complex potential f = 4 + iy. This function is 
also analytic in the lower half-plane y < 0 and vanishes as y +. -a. By using the 
Cauchy integral formula in the complex potential plane with a contour consisting of 
the &axis and a half-circle of arbitrary large radius in the lower half-plane y < 0, 
we obtain after taking the real part 

The integral in (2.7) is a Cauchy principal value. 
Using the kinematic conditions (2.4) and (2.5) we have 

0 = 0  on AB and E G ,  (2.8) 

(2.9) 
1 
2 

% = - n  on BC,  

1 
2 

8=- -n  on D E .  

Substituting (2.8)-(2.10) into (2.7) we obtain 

(2.10) 

(2.11) 

Furthermore the symmetry of the flow implies @-+) = O(4). Thus (2.11) can be 
rewritten as 

Substituting (2.6) into (2.3) yields 

;fez' + y ( 4 )  = y ( ~ )  (2.13) 

This completes the reformulation of the problem. We seek z - i8 as an analytic 
function o f f  in the lower half-plane y < 0, satisfying (2.12) and (2.13). 
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2.2. Series expansion reformulation 
In this subsection we present another reformulation using a series representation. The 
idea is to map the flow domain onto the upper half-unit disk and to expand the 
complex velocity as a Taylor series inside the unit disk. The image of the free surface 
is the upper half-unit circle. The image of the solid boundaries is the real diameter. 

The mapping of the flow domain from the lower half-plane of the complex potential 
(f -plane) to the upper half-unit disk (t-plane) is provided by 

e 
(1 - e)2 f = ___ (t + 5 )  , (2.14) 

where e denotes the image of the point E in the t-plane (see figure 3). The link 
between P and e is provided by 

2e p = -  
(1 - e)2 

(2.15) 

Next the complex velocity 5 is expanded as 
+oo 

5 = (1 - t2)(e2 - t2)-'/* C ant2'. (2.16) 

This expansion factors out the singular behaviour of the velocity at the corners E 
and B (t = +e) and the singular behaviour of the velocity at the stagnation points 
D and C ( t  = k l ) .  Moreover, the expansion takes advantage of the symmetry of the 
problem. At t = 0, the velocity approaches unity. Therefore 

aO = e .  (2.17) 

n=O 

Bernoulli's equation (2.3) is rewritten as 

d5l2 + 2Y = 2Ylt=+l . (2.18) 

Parameterizing the free surface by 

t = e l U ,  O < o < z ,  

and differentiating (2.18) with respect to a leads to 

We note the identity 

e(1 - t2)2 
(e2 - t2)(1 - e2t2) ' 

- - P 2 -  f 2  

( P  + 1 ) 2  - f 2  

(2.19) 

(2.20) 

This completes the reformulation of the problem. The coefficients a,, in (2.16) are 
sought such that (2.19) is satisfied. 

3. Numerical results 
We now describe two different numerical schemes based on the integral equation 

reformulation and the series expansion reformulation of $2. Preliminary calculations 
based on these schemes have shown that the two parameters E and P cannot be 
specified independently. Here we present the final version of the schemes in which P 
is given and E is found as part of the solution. 



398 J.-M. Vanden-Broeck & F. Dias 

3.1. Integral equation reformulation 
In this section, we solve the system (2.12), (2.13) numerically. 

First we introduce the mesh points 

and the midpoints 

41-1/2  = ;(4,+* + 41) 5 I = 1,. . ., N - 1. (3.2) 

u, = 0(41) ,  I = 1 )..., N .  (3.3) 

( N  + 1) unknowns are introduced: and 

Equation (2.12) is evaluated at the midpoints 41-1,2 , I  = 1,. . . , N - 1. The Cauchy 
principal value is evaluated by the trapezoidal rule with a summation over the mesh 
points $J , J  = 1, ..., N .  The symmetry of the quadrature and of the discretization 
enables us to evaluate the Cauchy principal value as if it were an ordinary integral. 
This gives the values of z at the midpoints. 

Next we evaluate the values of y(4) and x(4) at the midpoints by integrating 
numerically (2.2). 

We obtain ( N  - 2) algebraic equations by satisfying (2.13) at the midpoints (3.2), 
except at Two more equations are obtained by imposing the conditions 

81 = u N = o .  (3.4) 
The last equation expresses the value of U1 in terms of U 2 , U 3 , U 4  by a three-point 
extrapolation formula. 

For a given value of P ,  this leads to a system of ( N  + 1) nonlinear algebraic 
equations for the ( N  + 1) unknowns. This system is solved numerically by Newton’s 
method. 

3.2. Series expansion reformulation 
The problem is solved numerically by truncating the infinite series in (2.16) after 
( N  - 1) terms. Next we introduce the ( N  - 1) mesh points on the free surface 

We satisfy the equation (2.19) at the mesh points (3.5). This yields ( N  - 1) equations 
for the following N unknowns: E and a,, n = 0,. . . , N - 2. The last equation simply is 
(2.17). For a given value of P (or e equivalently), this system of N nonlinear equations 
with N unknowns is solved by Newton’s method. 

4. Discussion of the results 
The schemes described in the previous section were used to compute solutions for 

various values of e and P. The numerical results obtained by the integral equation 
scheme were found to be in good agreement with those obtained by the series 
expansion scheme. This constitutes a check on both schemes. The integral equation 
scheme is more general and worked for all the solutions described in this Section. The 
series expansion scheme is more efficient (i.e. accurate solutions can be computed with 
N relatively small), but it is not well suited to solutions with a large number of waves. 
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FIGURE 4. Free-surface flows with two stagnation points. Computed solutions in the ( P ,  €)-plane. 
The branches are labelled I, 11, etc., counterclockwise The label is the number of waves present on 
the free surface for large values of P .  
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FIGUKF 5 Free-surface flows with two stagnation points Computed solutions on branch I with 
P = 0.5354, F = 0588, L = 467, FI  = 0355, H = 0452, C, = -6 19 (a) and P = 75 56, F = 22 14. 
L = 131 4, FI  = 0 41, H = 0 025, C, = 0 70 ( h )  

Values of P versus c are presented in figure 4. These results show that for each 
value of c,  there is a solution for only a discrete set of values of P .  Each curve in 
figure 4 defines a branch of solutions. It is convenient to label these branches I, 11, 
etc., counterclockwise. Although we have only computed eight branches of solutions, 
we expect that there is a countably infinite number of them. 

Free-surface profiles corresponding to branches I-VIII are presented in figures 5-9. 
The profile shown in figure 2 belongs to branch I. Figures 5-9 show that there is 
a train of waves on the free surface and that the label of a family is equal to the 
number of waves between the two vertical walls. For solutions with small-amplitude 
waves, it was checked that the wavelength is approximately equal to the wavelength 
271-5 of small-amplitude waves in deep water with phase velocity U .  

Several quantities of interest are found as part of the solution: they are the 
dimensionless width L between the vertical walls, the Froude number F1 based on 1, 
the pressure coefficient C,, and the ratio h/l  (see (2.1)). 

Since the change of width for a given P was found to be small as one moves from 
one branch to the other, it is clearer to present the graph of Lo - L versus P for 
the different branches, where LO denotes the length corresponding to c = 0 for the 
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FIGURE 6. Free-surface flows with two stagnation points. Computed solutions on branch I1 with 
P = 2.35, E = 0.704, L = 9.02, F, = 0.280, H = 0.199, C, = -4.09 ( a )  and P = 25, e = 4.29, 
L = 53.37, F/ = 0.283, H = 0.041, C, = -0.019 (b) .  
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FIGURE 7. Free-surface flows with two stagnation points. Computed solutions on branch I11 with 
P = 3, e = 0.586, L = 10.49, Fl = 0.236, H = 0.168, C, = -5.00 (a) and P = 15, e = 1.84, 
L = 35.08, F/ = 0.229, H = 0.054, C, = -1.04 (b). The vertical scale is exaggerated. 
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FIGURE 8. Free-surface flows with two stagnation points. Computed solutions on branch IV with 
P = 5.35, E = 0.66, L = 15.57, Fl = 0.206, H = 0.111, C, = -4.25 ( a )  and P = 20, E = 1.80, 
L = 45.25, Fl = 0.20, H = 0.041, C, = -1.08 (b). The vertical scale is exaggerated. 

same value of P .  When E = 0, the free surface is flat (see (2.13)) and O(4) = 0 for 
-P < 4 < P .  Therefore (2.12) gives 

1 P 2  - 42 
2 ( P  + 1 ) 2 - 4 2 '  

zo(4) = - In 

It is easy to integrate (2.2) to obtain 
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FIGURE 9. Free-surface flows with two stagnation points. Computed solutions on branch VIII with 
P = 30, E. = 1.34, L = 65.8, FI  = 0.143, H = 0.027, C, = -1.69 (a)  and P = 80, F = 3.405 (b) .  The 
vertical scale is exaggerated. 
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FIGURE 10. Distance between vertical walls as a function of P : (a)  Lo corresponding to E = 0, 
( b )  Lo - L along the branches I, 11, IV, VII (counterclockwise). 

Lo is plotted in figure lO(a) while LO - L is plotted in figure 10(b). 
Figure 11 shows a plot of FI  versus h/l .  Along each branch of solution, the Froude 

number is almost constant. This result is similar to the result for periodic gravity 
waves. For such waves, the Froude number based on the wavelength 1 = 271/k, 

is equal to 0.3989 for infinitesimal waves and to 0.4358 for the highest waves. If there 
are n waves confined in the distance 1, Fi must be divided by n'i2, Figure 12 shows a 
plot of C, versus h / l .  It is interesting to note that blowing-type solutions with C, > 0 
are possible only along branch I. All other solutions are suction-type solutions with 
C, < 0. All branches except branch I end close to C, = 0, which corresponds to 
F,? = 2H. The curve C, = 0 has been added in figure 11. 

As P increases along a branch, the waves on the free surface increase in amplitude. 
The behaviour of the solutions for P large is described in detail in the next Section. 

As P decreases along a branch, the waves ultimately become of extremely small 
amplitude and can no longer be seen on the profiles (see part (a) in figures 5-9). 
For each branch shown in figure 4, we had to stop our calculations at some value 
of P because our scheme became sensitive for smaller values of P .  What happens 
for smaller values of P still is an open problem: in order to study precisely what 
happens an analytical approach or perhaps a code with exponential accuracy should 
be used. 
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FIGURE 11. Froude number FI based on the width 1 between the vertical walls as a function of H .  
The dotted line along branch I represents an extrapolation between the last computed point and 
the infinite-P limit. The thick dotted line is the curve C, = 0. The labelling of the curves is the 
same as in figure 4. 

0.1 0.2 0.3 0.4 0.5 
H 

FIGURE 12. Pressure coefficient C, versus H .  The labelling of the curves is the same as in figure 4. 

Our solutions are expected to approach asymptotically the stern flows of Vanden- 
Broeck & Tuck (1977) and Vanden-Broeck, Schwartz & Tuck (1978) as the label of 
the families tends to infinity. To check this, we consider branch VIII. Figure 9 shows 
two computed solutions with P = 30 and P = 80. The profile with P = 80 for x 
negative is similar to the stern flow shown in figure 1 of Vanden-Broeck (1980). In 
figure 2 of his paper, Vanden-Broeck (1980) gives the value of the steepness of waves 
versus the draught-based Froude number (the draught is defined as the distance 
between the horizontal wall and the level of the free surface at which the velocity is 
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Branch P a !  a10 a20 a30 
I 0.5354 -1.6 x lo-' 0 0 0 
1 40 -0.11 -1.6 x 10-4 -7.2 x 10-7 -4.7 x 10-9 

VIII 8 0.10 -4.3 x 10-5 5.9 x 10-9 -2.5 x 10-11 
VIII 20 0.17 -4.1 x 10-3 2.7 x 10-5 8.0 x 10-7 

TABLE 1. Decay of coefficients of the series (2.16). Zero coefficients are coefficients with an absolute 
value smaller than the machine accuracy. 

equal to U ) .  We computed the draught-based Froude number and the steepness of 
the waves for the solutions of branch VIII and found that these values agree with 
the broken curve of figure 2 in Vanden-Broeck (1980) for P sufficiently large. The 
draught-based Froude number corresponding to P = 86 is equal to 3.22. 

Regarding accuracy, we have checked that increasing the number of points (200, 
400, 600) does not change the results for the integral formulation, except near the 
critical region (i.e. for P small). For P large on branches with a high label, a large 
number of points is required. In the series truncation method, it was found that the 
coefficients in the series decrease quite rapidly (see table 1). 

5. Solutions for large values of P 
5.1. Branch 1 

As P increases, the height of the wall becomes small with respect to the amplitude of 
the wave (see figure 5b). The parameters used so far are not appropriate to deal with 
large values of P .  Better parameters are 

These new parameters essentially arise by taking $ p  as unit potential rather than 
$ K .  Figure 13 shows the variation of 2 as a function of E along the upper part of 
branch I. The results for large P along branch I seem to indicate that flows still with 
two stagnation points but without corners can be computed. It is the subject of this 
subsection to compute such limiting configurations. We shall construct a solution for 
which the points C and D still are stagnation points but the angle between the free 
surface and the wall now is 2n/3. We use a scheme based on a series expansion. 
The mapping of the flow domain from the lower half-plane of the complex potential 
(f-plane) to the upper half-unit disk (t-plane) is provided by 

f = i ( t + i ) .  

Next we expand the complex velocity as 

i = (1 - t2l2I3 C ant2n. (5.3) 
n=O 

This expansion factors out the leading singular behaviour of the velocity at the 
stagnation points D and C ( t  = kl). There are lower-order singularities at t = fl 
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FIGURE 13. Plot of Y versus E along the upper part of branch I. The dotted line represents an 
extrapolation between the last computed point ( P  = 75.56) and the infinite-P limit. 

(see Grant 1973). However in spite of these singularities, the function 

i 
(1 - t y 3  

is analytic in (tl < 1 and continuous in It( d 1 and can be expanded in powers of t 
(see Vanden-Broeck & Tuck 1994). Moreover, the expansion takes advantage of the 
symmetry of the problem. At t = 0, the velocity approaches unity. Therefore a0 = 1. 
The problem was solved numerically by truncating the series in (5.3) after a finite 
number of terms as in 53.2. A unique solution was found. The corresponding values 
of the parameters are E = 0.277 and 2’ = 1.432. These values have been added to 
figures 11, 12 and 13. The corresponding profile is shown in figure 14. 

5.2. Branch II 
Using the expansion (5.3), we tried to compute solutions with two waves but were 
not successful. What happens is that the two-wave profiles (i.e. the solutions along 
branch 11) develop a stagnation point in the middle as P increases. This limiting 
profile is reached before P reaches infinity. Indeed, the programs (both integral and 
series) failed to converge for values of P above P = 26 along branch 11. The complex 
velocity ( is then expanded as 

n=O 

This expansion factors out the leading singular behaviour of the velocity at the 
stagnation points D, C ( t  = f l )  arid in the middle of the free surface ( t  = i). 
Moreover, the expansion takes advantage of the symmetry of the problem. At t = 0, 
the velocity approaches unity. Therefore a0 = e. A unique solution was found. The 
corresponding values of the parameters are e = 0.762, P = 26.8, E = 0.176 and 
9 = 2.09. The corresponding profile is shown in figure 15. 
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FIGURE 14. Free-surface flow corresponding to the limit on branch I as P goes to infinity. 

The Froude number Fl is equal to 0.44. 
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FIGURE 15. Limiting solution along branch 11. The corresponding values for P and Fl 

are 26.8 and 0.290. 

5.3. Branch I11 
For branch 111, we assumed the limiting configuration to be one with four stagnation 
points, two on the walls and two symmetric ones along the free surface. The complex 
velocity [ is expanded as 

fir, 

= (1 - t2)(e2 - t2)-'/2[(1 + t2)2 - 4t2 cos2 y11/3 1 ant2n, (5 .5)  
n=O 

where y and n -y are the angles in the t-plane of the unknown stagnation points. This 
expansion factors out the leading singular behaviour of the velocity at the stagnation 
points D, C ( t  = Ifrl) and at the two symmetric points along the free surface whose 
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FIGURE 16. Limiting solution along branch 111. The corresponding values for P and F, 
are 39.0 and 0.241. 

location is unknown. Moreover, the expansion takes advantage of the symmetry of 
the problem. At t = 0, the velocity approaches unity. Therefore a0 = e. A unique 
solution was found. The corresponding values of the parameters are e = 0.8, y = 1.24, 
P = 39, E = 0.12 and 2’ = 2.1. The corresponding profile is shown in figure 16. 
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